summaryrefslogtreecommitdiff
path: root/README.md
blob: 9706ec3b3467da6c5dc78dcc58e2bac307d823b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
<div align="center">
    <a href="https://github.com/xAlpharax/neural-art/stargazers">
        <img src="https://img.shields.io/github/stars/xAlpharax/neural-art?color=B4F8C8&labelColor=05080A&style=for-the-badge">
    </a>
</div>

# neural-art

Neural Style Transfer done from the CLI using a VGG backbone and presented as an MP4.

Weights can be downloaded from [here](https://files.catbox.moe/wcao20.pth). The downloaded file (renamed to `vgg_conv_weights.pth`) should be placed in `./weights/` and it will be ignored when pushing, as seen in `./.gitignore`. **Update:** Alternatively, if the `./weights/` directory is empty, `./neuralart.py` will automatically download publicly available VGG19 weights for the user.

More in depth information about Neural Style Transfer ( NST ) can be found in this great [paper](https://arxiv.org/abs/1705.04058). Make sure to check [Requirements](#requirements) and [Usage](#usage) as well as the [Video Gallery](#results---click-on-dropdown-menu-for-video-gallery).

### Why use this in 2024 ?

Because Style Transfer hasn't changed drastically in terms of actual results in the past years. I personally find a certain beauty in inputting a style and content image rather than a well curated prompt with a dozen of switches. Consider this repo as a quick and simple ***just works*** solution that can run on both CPU and GPU effectively.

I developed this tool as a means to obtain fancy images and visuals for me and my friends. It somehow grew into something bigger that is actually usable, so much so that I got to integrate it in a workflow in conjunction with [Stable Diffusion](https://github.com/CompVis/stable-diffusion) ( see also [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui) ) which I want to develop a plugin for in the near future.

## Requirements

Clone the repository:

```bash
git clone https://github.com/xAlpharax/neural-art

# or via ssh
git clone git@github.com:xAlpharax/neural-art.git
```

Create a virtual environment to separate the required packages from system-wide packages:

```bash
virtualenv path/to/neural-art

source path/to/neural-art/bin/activate
```

( ! ) When you're finished with the environment:

```bash
# deactivate
```

All the required packages are listed in `./requirements.txt` as per python etiquette:

```bash
pip install -r requirements.txt
```

## Usage

The main script sits comfortably in `./stylize.sh`, run it from the project's root directory:

```bash
./stylize.sh path/to/style_image path/to/content_image
```

A helper script is also available to run `./stylize.sh` for each distinct pair of images present in the `./Images/` directory:

```bash
./all.sh
```

Moreover, `./all.sh` is aware of the already rendered mp4 files and will skip stylizing the combinations that are already present. In contrast, `./stylize.sh` overwrites images and videos.

### Output videos / images and temporary files

The stylization process outputs a video in the format `./content_in_style.mp4` with `content` and `style` being the 2nd and 1st command line arguments of the `./stylize.sh` script.

If, at any point, you need the individual frames that comprise the generated `./content_in_style.mp4`, check the `./Output/` directory for `.png` images with frames at each iteration.
The `./neuralart.py` code that sits at the heart of this project generates raw numpy array data to `./images.npy` which in turn is manipulated by `./renderer.py` to output frames as `.png` images.

These intermediary outputs are temporarily stored and get removed each time the `./stylize.sh` script is run.

All the stylize combinations from the `./Images/` directory have been saved to [this archive](https://drive.google.com/file/d/1k_ECmiHe3l0uS0ps2faWk8PHAOaNYZPp). Check the video gallery below to go through some of them that look the best:


<details>


<summary><h3>Results - Click on dropdown menu for video gallery</h3></summary>


Starry Night in various other styles 8

https://github.com/xAlpharax/neural-art/assets/42233094/6d60fa23-45eb-4af6-a41d-e97df4cc2fb7

https://github.com/xAlpharax/neural-art/assets/42233094/83160305-e397-40f8-94f6-db61fc25b4a4

https://github.com/xAlpharax/neural-art/assets/42233094/4ff8fa14-50c0-4d5f-b744-098555681cde

https://github.com/xAlpharax/neural-art/assets/42233094/fe75e32d-d0f1-43eb-a5dc-8a74c1eeceec

https://github.com/xAlpharax/neural-art/assets/42233094/131cfbae-ca6c-4b06-aa01-05e1f2557021

https://github.com/xAlpharax/neural-art/assets/42233094/4e108c08-c365-49e1-ad14-0d993621d6d2

https://github.com/xAlpharax/neural-art/assets/42233094/bdfd99d0-06de-4753-899c-6c0e22b05b83

https://github.com/xAlpharax/neural-art/assets/42233094/e50cf174-20c9-4dc1-9cc9-960122147bae


Monet in various other styles 7

https://github.com/xAlpharax/neural-art/assets/42233094/49b04fe6-494f-47d5-9827-eb6dfbf850dd

https://github.com/xAlpharax/neural-art/assets/42233094/71419dbf-ab55-4011-9ce3-b4c1b9fbd5d6

https://github.com/xAlpharax/neural-art/assets/42233094/11081f9d-a629-4693-9894-fb5d9eb55ad1

https://github.com/xAlpharax/neural-art/assets/42233094/b282f2b9-bf52-4653-9b01-37fe90e99a47

https://github.com/xAlpharax/neural-art/assets/42233094/c8f54e6c-0067-4240-af20-85a9427b53b8

https://github.com/xAlpharax/neural-art/assets/42233094/1d632241-3e6c-4f46-9186-e92421d2b29c

https://github.com/xAlpharax/neural-art/assets/42233094/0be8f741-c424-4f47-956d-4308c1f5ec14


Colorful in various other styles 6

https://github.com/xAlpharax/neural-art/assets/42233094/510b5591-a3a1-4205-9533-b40046164852

https://github.com/xAlpharax/neural-art/assets/42233094/73788e8b-c6cc-4436-9286-c8a3ac183095

https://github.com/xAlpharax/neural-art/assets/42233094/60130d15-6cdd-4c9e-96f5-66d6f47959de

https://github.com/xAlpharax/neural-art/assets/42233094/b0d62d42-9c57-4426-ba3a-ac852f4872b2

https://github.com/xAlpharax/neural-art/assets/42233094/953660a6-070e-4f62-81dd-4b97a25dfb8f

https://github.com/xAlpharax/neural-art/assets/42233094/d7f6cd57-7524-42de-a098-c491324c50a3


Azzalee in various other styles 5

https://github.com/xAlpharax/neural-art/assets/42233094/ec8595af-7b96-4810-b888-c6ef80a1d6da

https://github.com/xAlpharax/neural-art/assets/42233094/91a49410-a9d5-46ae-8fa6-57715d18b485

https://github.com/xAlpharax/neural-art/assets/42233094/1c16a765-4321-45db-a119-c5b44edf9b4a

https://github.com/xAlpharax/neural-art/assets/42233094/b2375f7c-46cf-45a3-89cb-4dbf54e68ca4

https://github.com/xAlpharax/neural-art/assets/42233094/927f429d-e8a5-4165-b2b5-79a1338651e0


Jitter Doll in various other styles 5

https://github.com/xAlpharax/neural-art/assets/42233094/9d988d8e-b6c0-4dfd-9f3d-5cb006901aaa

https://github.com/xAlpharax/neural-art/assets/42233094/40e05578-881e-4be8-a8e2-75ed388f1ace

https://github.com/xAlpharax/neural-art/assets/42233094/5a98489c-8ad9-4708-8b47-35af1e216c1b

https://github.com/xAlpharax/neural-art/assets/42233094/bbca966d-bba1-4f3c-927f-3ca7836fe150

https://github.com/xAlpharax/neural-art/assets/42233094/2347bfa3-f4c4-402b-b9c9-bef48f2c147b


Shade in various other styles 7

https://github.com/xAlpharax/neural-art/assets/42233094/da894522-1cfc-492d-b2ec-7f0a6a23fb4d

https://github.com/xAlpharax/neural-art/assets/42233094/682427bb-f5c1-439d-b535-9cb056a9a022

https://github.com/xAlpharax/neural-art/assets/42233094/4f9a1e7a-1930-4503-8288-0353b63a213b

https://github.com/xAlpharax/neural-art/assets/42233094/082be485-ff88-48d0-960e-0883e903dfc2

https://github.com/xAlpharax/neural-art/assets/42233094/80015d89-5a75-4487-b4c7-a7b04341585b

https://github.com/xAlpharax/neural-art/assets/42233094/d277e8df-eef7-4f99-9a52-0bd908a30f2e

https://github.com/xAlpharax/neural-art/assets/42233094/fb5a8ffe-5aca-42bb-941f-bbd37eef9fe3


Abstract in various other styles 6

https://github.com/xAlpharax/neural-art/assets/42233094/50bb24f6-f869-4508-8598-9d0795adcc2e

https://github.com/xAlpharax/neural-art/assets/42233094/f38d2c3e-54f2-442a-a583-a1327cd763d4

https://github.com/xAlpharax/neural-art/assets/42233094/1fd17d45-51ae-4d1f-9b43-776beb0a802b

https://github.com/xAlpharax/neural-art/assets/42233094/f282cc37-17bb-451a-b213-0bb6ad3de5a7

https://github.com/xAlpharax/neural-art/assets/42233094/b2ec336a-ed80-4750-b620-d600987dd3cc

https://github.com/xAlpharax/neural-art/assets/42233094/89bc91fd-c311-4d8c-a1fc-b2a747432fc0


Gift in various other styles 5

https://github.com/xAlpharax/neural-art/assets/42233094/0423c75c-3db5-45f6-b579-ef1c0fe95475

https://github.com/xAlpharax/neural-art/assets/42233094/18182505-e66d-4d2e-86e1-b0094ee11cfc

https://github.com/xAlpharax/neural-art/assets/42233094/5ae434ae-936f-4ca0-bfc6-29775355505f

https://github.com/xAlpharax/neural-art/assets/42233094/1713e3bb-c34b-4790-8c30-3447aedfbcd3

https://github.com/xAlpharax/neural-art/assets/42233094/9a87adc8-d00d-4303-bd2f-3677d6a68ce7


kanade in various other styles 8

https://github.com/xAlpharax/neural-art/assets/42233094/695b3a78-0cb2-4a10-97f2-8d3a875ff265

https://github.com/xAlpharax/neural-art/assets/42233094/1d991b79-dca1-4fe6-bda6-9a8d38f134e7

https://github.com/xAlpharax/neural-art/assets/42233094/bd2b83b1-823b-4734-88d6-622858e18b74

https://github.com/xAlpharax/neural-art/assets/42233094/411ada80-b4db-4721-b0d7-7be059e96970

https://github.com/xAlpharax/neural-art/assets/42233094/4a6cf35b-087b-4b9a-b617-f9f22ca48047

https://github.com/xAlpharax/neural-art/assets/42233094/6bea757f-1918-4674-9324-c57b4cd3401a

https://github.com/xAlpharax/neural-art/assets/42233094/10c7c5fb-1a9b-4e19-82e7-e2d27cb2b079

https://github.com/xAlpharax/neural-art/assets/42233094/89ad03b0-8213-4b70-9b6a-b1ac55e8f2d0


bunnies in various other styles 5

https://github.com/xAlpharax/neural-art/assets/42233094/29bbcfa0-fd2e-484c-abf4-5bbcfe7aee44

https://github.com/xAlpharax/neural-art/assets/42233094/286f23cb-90ed-4ba1-b79c-06450d15e7bb

https://github.com/xAlpharax/neural-art/assets/42233094/a9ab3606-921e-4add-adf0-2b927a5dc62b

https://github.com/xAlpharax/neural-art/assets/42233094/ac94a895-5e7f-4c77-8e24-9c297a970f6a

https://github.com/xAlpharax/neural-art/assets/42233094/86113129-c4be-445d-a017-6fa394d83fda


cute in various other styles 5

https://github.com/xAlpharax/neural-art/assets/42233094/6b7fc161-ff87-4b68-8035-7bb3c3e5a417

https://github.com/xAlpharax/neural-art/assets/42233094/4dceae73-1ad4-4ed2-b8bf-6f7e909a1440

https://github.com/xAlpharax/neural-art/assets/42233094/667a66c1-f4f9-408e-aa9c-06c7e4af21e0

https://github.com/xAlpharax/neural-art/assets/42233094/f4334996-f1a5-4c57-add1-8781dfc6a8e0

https://github.com/xAlpharax/neural-art/assets/42233094/92c5f9bb-4224-4d0f-af2f-f7113904ed0f


kek in various other styles 2

https://github.com/xAlpharax/neural-art/assets/42233094/36dd6f3f-aca6-4e0f-8be8-3fd3ec4ab772

https://github.com/xAlpharax/neural-art/assets/42233094/3bd2433a-54d1-40e2-9d00-cb165f6a2985


Tarantula reference:)

https://github.com/xAlpharax/neural-art/assets/42233094/555a4675-da19-4fa6-9104-1ee2c63a7f8b


</details>


## Contributing

Any sort of help, especially regarding the QoS ( Quality of Service ) of the project, is appreciated. Feel free to open an issue in the **Issues** tab and discuss the possible changes there. As of now, **neural-art** would be in great need of a clean and friendly arguments handler ( i.e. the one the `argparse` python package provides ) in order to accommodate to a cleaner interface for `./neuralart.py` and / or `./stylize.sh`.

Thank you. Happy neural-art-ing !