1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
<div align="center">
<a href="https://github.com/xAlpharax/neural-art/stargazers">
<img src="https://img.shields.io/github/stars/xAlpharax/neural-art?color=B4F8C8&labelColor=05080A&style=for-the-badge">
</a>
</div>
# neural-art
Neural Style Transfer done from the CLI using a VGG backbone and presented as an MP4.
Weights can be downloaded from [here](https://files.catbox.moe/wcao20.pth). The downloaded file (renamed to `vgg_conv_weights.pth`) should be placed in `./weights/` and it will be ignored when pushing, as seen in `./.gitignore`. **Update:** Alternatively, if the `./weights/` directory is empty, `./neuralart.py` will automatically download publicly available VGG19 weights for the user.
More in depth information about Neural Style Transfer ( NST ) can be found in this great [paper](https://arxiv.org/abs/1705.04058). Make sure to check [Requirements](#requirements) and [Usage](#usage) as well as the [Video Gallery](#results---click-on-dropdown-menu-for-video-gallery).
### Why use this in 2024 ?
Because Style Transfer hasn't changed drastically in terms of actual results in the past years. I personally find a certain beauty in inputting a style and content image rather than a well curated prompt with a dozen of switches. Consider this repo as a quick and simple ***just works*** solution that can run on both CPU and GPU effectively.
I developed this tool as a means to obtain fancy images and visuals for me and my friends. It somehow grew into something bigger that is actually usable, so much so that I got to integrate it in a workflow in conjunction with [Stable Diffusion](https://github.com/CompVis/stable-diffusion) ( see also [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui) ) which I want to develop a plugin for in the near future.
## Requirements
Clone the repository:
```bash
git clone https://github.com/xAlpharax/neural-art
# or via ssh
git clone git@github.com:xAlpharax/neural-art.git
```
Create a virtual environment to separate the required packages from system-wide packages:
```bash
virtualenv path/to/neural-art
source path/to/neural-art/bin/activate
```
( ! ) When you're finished with the environment:
```bash
# deactivate
```
All the required packages are listed in `./requirements.txt` as per python etiquette:
```bash
pip install -r requirements.txt
```
## Usage
The main script sits comfortably in `./stylize.sh`, run it from the project's root directory:
```bash
./stylize.sh path/to/style_image path/to/content_image
```
A helper script is also available to run `./stylize.sh` for each distinct pair of images present in the `./Images/` directory:
```bash
./all.sh
```
Moreover, `./all.sh` is aware of the already rendered mp4 files and will skip stylizing the combinations that are already present. In contrast, `./stylize.sh` overwrites images and videos.
### Output videos / images and temporary files
The stylization process outputs a video in the format `./content_in_style.mp4` with `content` and `style` being the 2nd and 1st command line arguments of the `./stylize.sh` script.
If, at any point, you need the individual frames that comprise the generated `./content_in_style.mp4`, check the `./Output/` directory for `.png` images with frames at each iteration.
The `./neuralart.py` code that sits at the heart of this project generates raw numpy array data to `./images.npy` which in turn is manipulated by `./renderer.py` to output frames as `.png` images.
These intermediary outputs are temporarily stored and get removed each time the `./stylize.sh` script is run.
All the stylize combinations from the `./Images/` directory have been saved to [this archive](https://drive.google.com/file/d/1k_ECmiHe3l0uS0ps2faWk8PHAOaNYZPp). Check the video gallery below to go through some of them that look the best:
<details>
<summary><h3>Results - Click on dropdown menu for video gallery</h3></summary>
Starry Night in various other styles 8
https://github.com/xAlpharax/neural-art/assets/42233094/6d60fa23-45eb-4af6-a41d-e97df4cc2fb7
https://github.com/xAlpharax/neural-art/assets/42233094/83160305-e397-40f8-94f6-db61fc25b4a4
https://github.com/xAlpharax/neural-art/assets/42233094/4ff8fa14-50c0-4d5f-b744-098555681cde
https://github.com/xAlpharax/neural-art/assets/42233094/fe75e32d-d0f1-43eb-a5dc-8a74c1eeceec
https://github.com/xAlpharax/neural-art/assets/42233094/131cfbae-ca6c-4b06-aa01-05e1f2557021
https://github.com/xAlpharax/neural-art/assets/42233094/4e108c08-c365-49e1-ad14-0d993621d6d2
https://github.com/xAlpharax/neural-art/assets/42233094/bdfd99d0-06de-4753-899c-6c0e22b05b83
https://github.com/xAlpharax/neural-art/assets/42233094/e50cf174-20c9-4dc1-9cc9-960122147bae
Monet in various other styles 7
https://github.com/xAlpharax/neural-art/assets/42233094/49b04fe6-494f-47d5-9827-eb6dfbf850dd
https://github.com/xAlpharax/neural-art/assets/42233094/71419dbf-ab55-4011-9ce3-b4c1b9fbd5d6
https://github.com/xAlpharax/neural-art/assets/42233094/11081f9d-a629-4693-9894-fb5d9eb55ad1
https://github.com/xAlpharax/neural-art/assets/42233094/b282f2b9-bf52-4653-9b01-37fe90e99a47
https://github.com/xAlpharax/neural-art/assets/42233094/c8f54e6c-0067-4240-af20-85a9427b53b8
https://github.com/xAlpharax/neural-art/assets/42233094/1d632241-3e6c-4f46-9186-e92421d2b29c
https://github.com/xAlpharax/neural-art/assets/42233094/0be8f741-c424-4f47-956d-4308c1f5ec14
Colorful in various other styles 6
https://github.com/xAlpharax/neural-art/assets/42233094/510b5591-a3a1-4205-9533-b40046164852
https://github.com/xAlpharax/neural-art/assets/42233094/73788e8b-c6cc-4436-9286-c8a3ac183095
https://github.com/xAlpharax/neural-art/assets/42233094/60130d15-6cdd-4c9e-96f5-66d6f47959de
https://github.com/xAlpharax/neural-art/assets/42233094/b0d62d42-9c57-4426-ba3a-ac852f4872b2
https://github.com/xAlpharax/neural-art/assets/42233094/953660a6-070e-4f62-81dd-4b97a25dfb8f
https://github.com/xAlpharax/neural-art/assets/42233094/d7f6cd57-7524-42de-a098-c491324c50a3
Azzalee in various other styles 5
https://github.com/xAlpharax/neural-art/assets/42233094/ec8595af-7b96-4810-b888-c6ef80a1d6da
https://github.com/xAlpharax/neural-art/assets/42233094/91a49410-a9d5-46ae-8fa6-57715d18b485
https://github.com/xAlpharax/neural-art/assets/42233094/1c16a765-4321-45db-a119-c5b44edf9b4a
https://github.com/xAlpharax/neural-art/assets/42233094/b2375f7c-46cf-45a3-89cb-4dbf54e68ca4
https://github.com/xAlpharax/neural-art/assets/42233094/927f429d-e8a5-4165-b2b5-79a1338651e0
Jitter Doll in various other styles 5
https://github.com/xAlpharax/neural-art/assets/42233094/9d988d8e-b6c0-4dfd-9f3d-5cb006901aaa
https://github.com/xAlpharax/neural-art/assets/42233094/40e05578-881e-4be8-a8e2-75ed388f1ace
https://github.com/xAlpharax/neural-art/assets/42233094/5a98489c-8ad9-4708-8b47-35af1e216c1b
https://github.com/xAlpharax/neural-art/assets/42233094/bbca966d-bba1-4f3c-927f-3ca7836fe150
https://github.com/xAlpharax/neural-art/assets/42233094/2347bfa3-f4c4-402b-b9c9-bef48f2c147b
Shade in various other styles 7
https://github.com/xAlpharax/neural-art/assets/42233094/da894522-1cfc-492d-b2ec-7f0a6a23fb4d
https://github.com/xAlpharax/neural-art/assets/42233094/682427bb-f5c1-439d-b535-9cb056a9a022
https://github.com/xAlpharax/neural-art/assets/42233094/4f9a1e7a-1930-4503-8288-0353b63a213b
https://github.com/xAlpharax/neural-art/assets/42233094/082be485-ff88-48d0-960e-0883e903dfc2
https://github.com/xAlpharax/neural-art/assets/42233094/80015d89-5a75-4487-b4c7-a7b04341585b
https://github.com/xAlpharax/neural-art/assets/42233094/d277e8df-eef7-4f99-9a52-0bd908a30f2e
https://github.com/xAlpharax/neural-art/assets/42233094/fb5a8ffe-5aca-42bb-941f-bbd37eef9fe3
Abstract in various other styles 6
https://github.com/xAlpharax/neural-art/assets/42233094/50bb24f6-f869-4508-8598-9d0795adcc2e
https://github.com/xAlpharax/neural-art/assets/42233094/f38d2c3e-54f2-442a-a583-a1327cd763d4
https://github.com/xAlpharax/neural-art/assets/42233094/1fd17d45-51ae-4d1f-9b43-776beb0a802b
https://github.com/xAlpharax/neural-art/assets/42233094/f282cc37-17bb-451a-b213-0bb6ad3de5a7
https://github.com/xAlpharax/neural-art/assets/42233094/b2ec336a-ed80-4750-b620-d600987dd3cc
https://github.com/xAlpharax/neural-art/assets/42233094/89bc91fd-c311-4d8c-a1fc-b2a747432fc0
Gift in various other styles 5
https://github.com/xAlpharax/neural-art/assets/42233094/0423c75c-3db5-45f6-b579-ef1c0fe95475
https://github.com/xAlpharax/neural-art/assets/42233094/18182505-e66d-4d2e-86e1-b0094ee11cfc
https://github.com/xAlpharax/neural-art/assets/42233094/5ae434ae-936f-4ca0-bfc6-29775355505f
https://github.com/xAlpharax/neural-art/assets/42233094/1713e3bb-c34b-4790-8c30-3447aedfbcd3
https://github.com/xAlpharax/neural-art/assets/42233094/9a87adc8-d00d-4303-bd2f-3677d6a68ce7
kanade in various other styles 8
https://github.com/xAlpharax/neural-art/assets/42233094/695b3a78-0cb2-4a10-97f2-8d3a875ff265
https://github.com/xAlpharax/neural-art/assets/42233094/1d991b79-dca1-4fe6-bda6-9a8d38f134e7
https://github.com/xAlpharax/neural-art/assets/42233094/bd2b83b1-823b-4734-88d6-622858e18b74
https://github.com/xAlpharax/neural-art/assets/42233094/411ada80-b4db-4721-b0d7-7be059e96970
https://github.com/xAlpharax/neural-art/assets/42233094/4a6cf35b-087b-4b9a-b617-f9f22ca48047
https://github.com/xAlpharax/neural-art/assets/42233094/6bea757f-1918-4674-9324-c57b4cd3401a
https://github.com/xAlpharax/neural-art/assets/42233094/10c7c5fb-1a9b-4e19-82e7-e2d27cb2b079
https://github.com/xAlpharax/neural-art/assets/42233094/89ad03b0-8213-4b70-9b6a-b1ac55e8f2d0
bunnies in various other styles 5
https://github.com/xAlpharax/neural-art/assets/42233094/29bbcfa0-fd2e-484c-abf4-5bbcfe7aee44
https://github.com/xAlpharax/neural-art/assets/42233094/286f23cb-90ed-4ba1-b79c-06450d15e7bb
https://github.com/xAlpharax/neural-art/assets/42233094/a9ab3606-921e-4add-adf0-2b927a5dc62b
https://github.com/xAlpharax/neural-art/assets/42233094/ac94a895-5e7f-4c77-8e24-9c297a970f6a
https://github.com/xAlpharax/neural-art/assets/42233094/86113129-c4be-445d-a017-6fa394d83fda
cute in various other styles 5
https://github.com/xAlpharax/neural-art/assets/42233094/6b7fc161-ff87-4b68-8035-7bb3c3e5a417
https://github.com/xAlpharax/neural-art/assets/42233094/4dceae73-1ad4-4ed2-b8bf-6f7e909a1440
https://github.com/xAlpharax/neural-art/assets/42233094/667a66c1-f4f9-408e-aa9c-06c7e4af21e0
https://github.com/xAlpharax/neural-art/assets/42233094/f4334996-f1a5-4c57-add1-8781dfc6a8e0
https://github.com/xAlpharax/neural-art/assets/42233094/92c5f9bb-4224-4d0f-af2f-f7113904ed0f
kek in various other styles 2
https://github.com/xAlpharax/neural-art/assets/42233094/36dd6f3f-aca6-4e0f-8be8-3fd3ec4ab772
https://github.com/xAlpharax/neural-art/assets/42233094/3bd2433a-54d1-40e2-9d00-cb165f6a2985
Tarantula reference:)
https://github.com/xAlpharax/neural-art/assets/42233094/555a4675-da19-4fa6-9104-1ee2c63a7f8b
</details>
## Contributing
Any sort of help, especially regarding the QoS ( Quality of Service ) of the project, is appreciated. Feel free to open an issue in the **Issues** tab and discuss the possible changes there. As of now, **neural-art** would be in great need of a clean and friendly arguments handler ( i.e. the one the `argparse` python package provides ) in order to accommodate to a cleaner interface for `./neuralart.py` and / or `./stylize.sh`.
Thank you. Happy neural-art-ing !
|